UNIVERSIDADE ESTADUAL DO RIO GRANDE DO SUL MESTRADO PROFISSIONAL EM DOCÊNCIA PARA CIÊNCIAS, TECNOL ENGENHARIA E MATEMÁTICA

SEQUÊNCIA DIDÁTICA COMO ESTRATÉGIA PARA CONSTRUIR OS PRIMEIROS SIGNIFICADOS PARA O CONCEITO DE FUNÇÃO POR MEIO DO CONCEITO DE OPERADOR

Clarice Caciani Taube

SEQUÊNCIA DIDÁTICA COMO ESTRATÉGIA PARA CONSTRUIR OS PRIMEIROS SIGNIFICADOS PARA O CONCEITO DE FUNÇÃO POR MEIO DO CONCEITO DE OPERADOR

Produto educacional produzido como requisito parcial para a conclusão do Mestrado Profissional em Docência para Ciências, Tecnologias, Engenharia e Matemática da Universidade Estadual do Rio Grande do Sul- PPGSTEM

Apresentação

Como docente, percebo dificuldades dos alunos dos anos finais do Ensino Fundamental na compreensão dos conteúdos relacionados com a álgebra e a conceitos primordiais para o pensamento funcional. Após ingressar no Mestrado, a convite da professora orientadora, comecei a participar dos encontros no Grupo de pesquisa-ação GPA-Remoto, grupo esse em que os professores pesquisam sua própria sala de aula. Nesses encontros, professores do ensino superior têm discutido a dificuldade dos alunos para lidar com o conceito de operador.

Lendo alguns trabalhos, como Henriques (2010), foi sinalizado que a falta de compreensão por parte dos alunos em conceitos elementares compromete a aprendizagem de conceitos mais complexos, e isso pode gerar motivo de insucesso para muitos alunos. Problema semelhante também é apontado por Cabral (2022), que pesquisa a descontinuidade na passagem do ensino básico para o ensino superior. Segundo a pesquisadora, alunos de disciplina de Cálculo acabam desistindo do curso porque além das dificuldades inerentes à disciplina, pois esses estudantes trazem consigo grandes lacunas de aprendizagem referentes aos conceitos básicos da Matemática.

Diante dessas inquietações, me propus a realizar uma pesquisa em uma turma do 9º ano, que trouxesse uma abordagem do conceito de função por meio do operador funcional.

Nesse material, apresento atividades que envolvem o conceito de função sob o aspecto de transformação via operador funcional, que podem ser trabalhadas no ensino fundamental ou médio.

Esse material é uma proposta que pode ser trabalhada em uma sala da aula com o devido cuidado de que o professor esteja atento para os seus alunos, pois eles é que definirão as modificações e adaptações necessárias.

Boa leitura!

Atividade: Operadores que transformam

Essa atividade é realizada por meio do construtor de funções no simulador Phet Colorado¹.

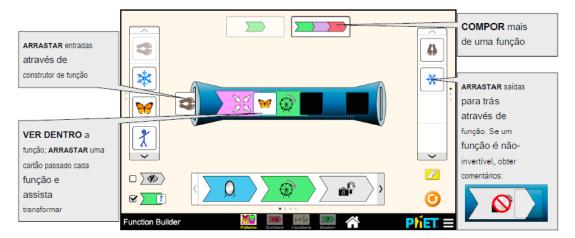
O objetivo é compreender a ideia de transformação de determinada entrada em uma máquina, identificar a entrada, saída e o operador responsável por essa transformação, bem como descrever as mudanças ocorridas (mudanças de tamanho, forma, orientação etc.).

Objetivos;

Materiais necessários;

Dispositivo com acesso ao simulador;

Link para o acesso: https://phet.colorado.edu/en/simulation/function-builder-basics


Caderno;

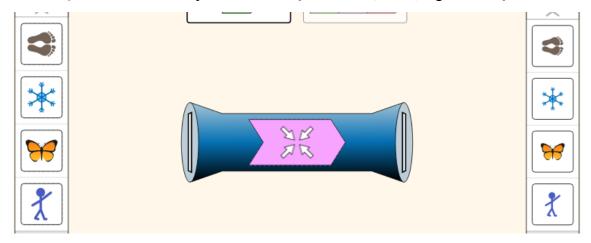
Projetor;

Procedimentos:

- Dividir a turma em grupos de 5;
- Apresentar o simulador;
- Realizar as atividades;

Apresentar aos alunos o modo de operação do simulador.

Simulador: Tela padrão.


Fonte: Phet Colorado².

¹ Disponível em: https://phet.colorado.edu/pt BR/simulations/function-builder. Acesso em: 11 nov. 2022.

² Disponível em: https://phet.colorado.edu/pt_BR/simulations/function-builder. Acesso em: 11 nov. 2022.

Questão 1. Explorar a simulação do Function Builder por alguns minutos, construir as funções que escolher. Anotar de uma a três observações sobre a construção de uma função.

Questão 2. Rotule as partes desta função: entrada, saída, regra da função.

Questão 3. Faça uma captura de tela de cada imagem depois de passar pelo operador e registre na tabela. Descreva o que acontece com as imagens depois que elas passam pelo operador. Nomeie o operador.

Registre na tabela:

	ENTRADAS			SAÍDAS	
				Você notou alguma mudança?	Nomeie o operador.
O P					
E R A					
D O R					
E S					

Questão 4. Com suas próprias palavras, com base em suas observações da tabela,
escreva o que você compreendeu referente a função do operador (na sua explicação tente usar
as palavras entrada, saída, operador, relacionado/relacionamento).
Questionamentos:

Questão 5. Com base na sua definição, crie uma previsão do que acontecerá se você passar a borboleta pelos seguintes operadores:

a)	Previsão:	
	•	

b) Verifique sua previsão alimentando a borboleta pelo operador. Clique no botão verde e registre as etapas pelas quais a imagem passa abaixo.

Caixa 1:

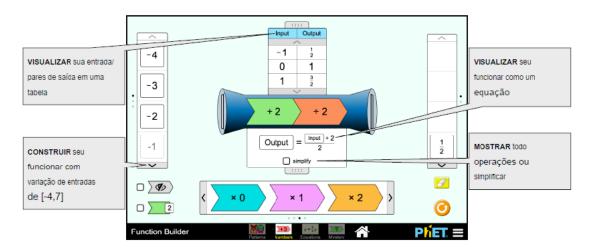
Caixa 2:

Caixa: 3

Fim:

Questão 6. Clique na guia "Mistério" na parte inferior da página.

- 1. Clique na opção de dois operadores na parte inferior da página.
- 2. Coloque pelo menos três entradas nos operadores misteriosos e descubra quais são as saídas.
- 3. Grave sua resposta.
- 4. Confira sua resposta clicando no botão do olho abaixo dos operadores e registre.


	Operador Misterioso 1	Operador Misterioso 2	Operador 1	Operador 2
Executar 1				
Executar 2				
Executar 3				

omo você desco	obriu qual era o	operador? () que você nota	ou sobre as saídas?
sino voce desec	orra quar cra o	operador: V	y que voce non	ou soore us suraus.

2 Atividade: Descrevendo operadores

Essa atividade também é realizada no simulador Phet Colorado³. O objetivo é descrever o operador responsável pelas transformações de um grupo de entradas, para determinar a saída; Prever saídas de um determinado operador, usando uma determinada entrada e construir operadores para criar uma nova função. Essa atividade é composta de três tarefas: utilizando a tela numérica, a tela equação e a tela misteriosa.

Descrevendo operadores - Tela numérica.

Fonte: Phet Colorado⁴.

Demonstrar o acesso e disponibilizar que os alunos interajam com o simulador. Pode-se fazer um levantamento quanto às semelhanças e diferenças do simulador básico bem como da tela numérica.

Apresentar o funcionamento com operações básicas, a fim da compreensão do resultado de saída.

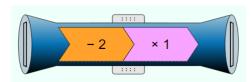
Procedimentos:

• Explore como construir diferentes totais usando a máquina. A máquina adiciona, subtrai, multiplica ou divide um número para resultar em outro.

³ Disponível em: https://phet.colorado.edu/pt_BR/simulations/function-builder. Acesso em: 11 nov. 2022.

⁴ Disponível em: https://phet.colorado.edu/pt_BR/simulations/function-builder. Acesso em: 11 nov. 2022.

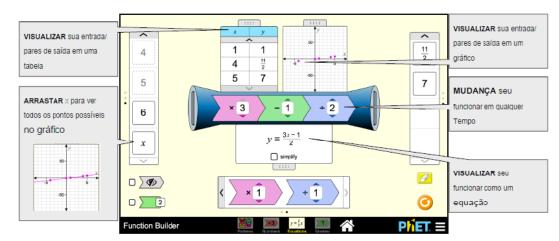
Questão 1. Sem inserir "operadores", arraste alguns valores de entrada e solte na máquina. Descreva os resultados para cada tentativa, comparando os números inseridos na máquina com os números de saída.


Valor de entrada	Valor de saída

Questão 2. Usando os "operadores", selecione uma opção e solte-a na máquina. Arraste alguns números dos valores da entrada para a máquina. Registre os valores na tabela para cada tentativa e compare os valores da entrada com os da saída.

Valor de entrada	Operador	Valor de saída

Questão 3. Repita o processo selecionando as diferentes operações disponíveis.


Questão 4. Selecione uma opção de operador com duas operações, como por exemplo:

Arraste alguns números dos valores da entrada para a máquina. Registre os valores na tabela para cada tentativa e compare os valores da entrada com os da saída.

Valor de entrada	Operador	Valor de saída

Descrevendo operadores - Tela equação.

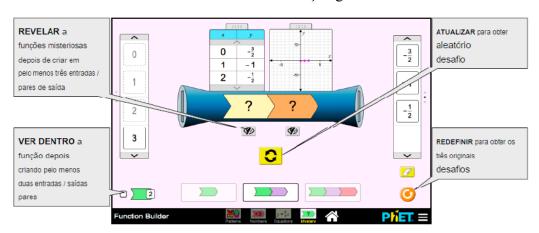
Fonte: Phet Colorado⁵.

Explore o simulador para melhor apropriação do mesmo.

Questão 1. Arraste e solte seus valores de entrada na máquina. Registre na tabela. Compare os números de entrada e saída para determinar qual é a função da sua máquina.

Valor de entrada	operadores (função que a máquina exerce)	Valor de saída

Questão 2. Crie uma regra para descrever a função que a sua máquina exerce. Explique por que você escolheu isso, com evidências para apoiar sua afirmação.


Regra:		 	
Explicação:			
<u> </u>			

 $^{^5 \} Disponível\ em:\ https://phet.colorado.edu/pt_BR/simulations/function-builder.\ Acesso\ em:\ 11\ nov.\ 2022.$

Questão 3. Agora seu grupo deve expor ao grande grupo as estratégias utilizadas para determinar o resultado.

Descrevendo operadores – Tela Misteriosa.

A tela Misteriosa desafía você a descobrir a função gerada.

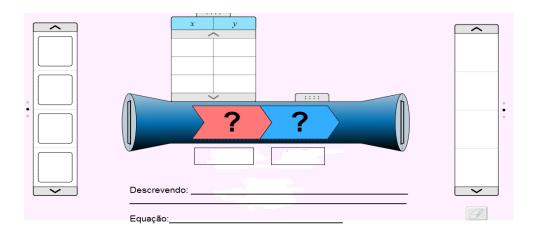
Fonte: Phet Colorado⁶.

Questão 1. Vocês devem determinar a função oculta, por meio da análise dos resultados obtidos. Como auxílio, vocês podem utilizar a tela de Equações como recurso, construindo equações, testando e modificando até determinar os operadores que correspondem a função misteriosa.

Questão 2. Tomem nota das suas estratégias utilizadas para obter o resultado.

É interessante sugerir aos alunos que façam a atividade com um, dois e três operadores. Eles podem substituir as palavras entrada e saída por símbolos que os represente.

Os grupos devem formular a frase que descreve a função misteriosa, utilizando as palavras entrada e saída e após, representar a frase com uma equação.


Sugestão para registro:

Utilizando um operador misterioso:

Entrada (x)	Saída (y)

⁶ Disponível em: https://phet.colorado.edu/pt_BR/simulations/function-builder. Acesso em: 11 nov. 2022.

Descrevendo a função misteriosa:	
Equação:	
Utilizando dois operadores misteriosos	Ε
Entrada (x)	Saída (y)
Descrevendo a função misteriosa:	
Equação:	
Utilizando três operadores misteriosos:	
Entrada (x)	Saída (y)
Descrevendo a função misteriosa:	
Equação:	
	uma equação, com operadores ocultos, como
desafio para os outros grupos.	
Sugestão para registro:	

Atividade - Desvendando operadores

Essa atividade é realizada por meio de um jogo. Esse jogo foi adaptado do jogo Mestre e adivinho (SMOLE; DINIZ; MILANI, 2007, p. 93-96).

O objetivo é estabelecer relações entre a linguagem em prosa e a linguagem algébrica simbólica (fonemas e grafemas); Perceber as operações algébricas como operadores funcionais.

Organização da turma: grupos de quatro alunos

Materiais: Conjunto de 12 tiras para cada grupo

Regras do jogo:

- 1. Decide-se quem começa.
- 2. As frases são embaralhadas e cada jogador recebe uma frase, que deverá ser descoberta pelos demais jogadores do grupo.
- 3. Em cada jogada, um dos participantes será o *Mestre*.
- 4. Cada jogador do grupo fala um número e o jogador com a frase, chamado de *Mestre*, deve operar com esse número o que a frase indicar. A descoberta se fará por meio da análise das respostas dadas por quem tem a frase nas mãos, ou seja, o *Mestre*.
- 5. Se nenhum dos jogadores descobrir a frase, depois de cada um ter dito um número, os jogadores podem dizer mais um número para o *Mestre*.
- 6. As frases são usadas apenas em uma jogada, ou seja, depois que o jogador descobriu a frase, ela não será devolvida ao monte.
- 7. Os números ditos e a frase devem ser anotados na folha de registro por todos os participantes do jogo.

- 8. Em cada jogada, ganha um ponto o jogador que primeiro descobrir a frase e escrever a expressão correspondente.
- 9. Ganha o jogo o jogador que tiver mais pontos.

Sugestões de frases:

Indique o sucessor do número.	Indique dez vezes o número.
Indique o triplo do número, mais um.	Indique o quadrado do número, mais um.
Indique o número mais cinco unidades.	Indique o número multiplicado pelo seu sucessor.
Indique o dobro do número, menos um.	Indique quatro vezes o número, menos um.
Indique quatro vezes o número.	Indique o oposto do número.
Indique o quadrado do número.	Indique o número mais três unidades.

Outras frases:

Indique o oposto do número, mais um.	Some o número com um e indique o quadrado deste resultado.
Subtraia o número de cem.	Indique o quadrado do número, menos dois.
Multiplique o número por cinco e some um ao resultado	Multiplique o número por quatro e some dois ao resultado.
Indique o triplo do número, menos um.	Indique o triplo do número.
Indique dez vezes o número e subtrai dois do resultado.	Indique o dobro do sucessor do número.
Indique o número multiplicado por seis.	Indique o cubo do número.

Sugestão de registro:

Número dito	Número respondido

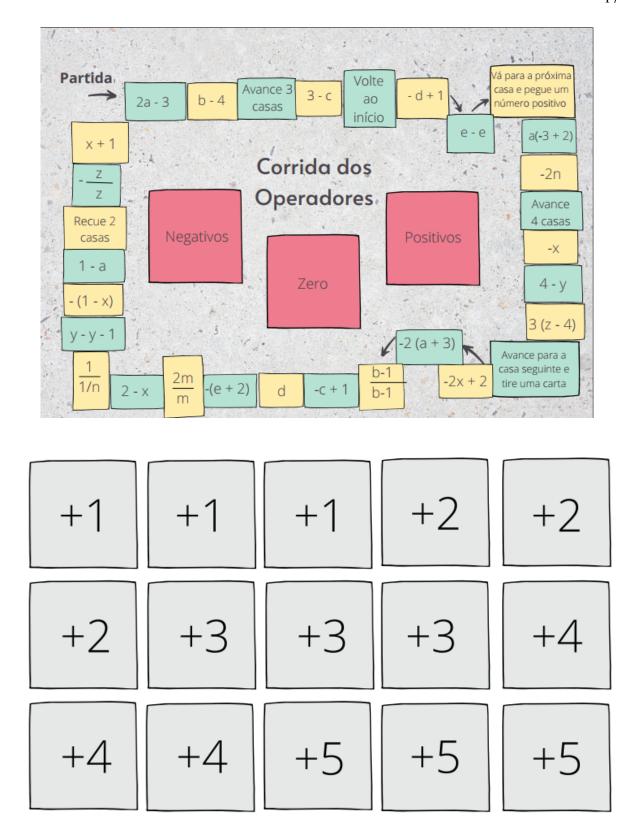
a) Operador em palavra	ıS:												
b) Operador como expr	essão	algéb	rica:										
2. Após jogarem algum	as vez	zes o j	ogo:	·									
a) Propor aos alunos o r	elato	verba	l e e	scrite	o sobr	e o j	jogo.						
b) Sugerir que os grupo	os crie	em fra	ise (opera	adores	g) qu	ıe serão ι	utilizado	os pa	ara jo	ogar no	ovame	nte,
com as mesmas regras.													
3. Propor problemas pa	ra bus	scaren	100	pera	dor e	expr	ressarem	general	idad	e:			
a. Número dito:	4	6	1	0	15	3							
Número respondido:	2	2 4	;	8	13	1							
Operador em palavras	:											·	
Operador como expres	ssão a	lgébri	ca: _										
b. Número dito:	2	6		1	12	7							
Número respondido:	5	1	7	2	35	20	0						
Operador em palavras:													
Operador como express													
c. Número dito:	1	2	4	5	; ç)							
Número respondido:	2	6	12	30	9	0							
Operador em palavras													_
Operador como expres													
		-	_										

a) Propor que a partir da exploração das frases, da tabela a ela correspondente e dos campos numéricos que podem ser usados para escolher o número dito, eles construam gráficos.

Pode se entregar malha quadriculada para facilitar a construção dos gráficos.

Atividade: Jogo Corrida de operadores.

Essa atividade consiste de um jogo e tem como objetivo compreender as operações algébricas como operadores. Cada casa do tabuleiro representa o operador (expressão algébrica de uma função) e as cartas representam as entradas (conjunto domínio).


Este jogo foi adaptado do jogo Corrida de obstáculos (SMOLE; DINIZ; MILANI, 2007, p. 85-90)

Organização da turma: grupos de quatro alunos.

Recursos: Para cada grupo, são necessários: 1 tabuleiro; marcadores diferentes; 1 dado; 18 cartas com números positivos, sendo 3 cartas de cada um dos seguintes valores: +1, +2, +3, +4, +5, +6; e 18 cartas de números negativos, sendo t3 cartas de cada um dos seguintes valores: -1, -2, -3, -4, -5, -6 e 5 cartas zero.

Regras:

- 1. As cartas são embaralhadas e colocadas nos respectivos lugares do tabuleiro viradas para baixo.
- 2. Os jogadores posicionam seus marcadores sobre o tabuleiro no ponto de partida.
- 3. Cada jogador, na sua vez, lança o dado e avança o número de casas igual ao número obtido no dado e retira uma carta de um dos montes à sua escolha.
- 4. Efetuam-se os cálculos e o resultado obtido indica o valor e o sentido do movimento. Se for positivo, avança o número de casas correspondentes ao número obtido. Se for negativo, recua o número de casas correspondentes ao número obtido. Se for zero, não se desloca.
- 5. Se o marcador cair em uma casa que contenha uma instrução, o jogador deverá executá-la nessa mesma jogada.
- 6. Sempre que o jogador escolher um número que anule o denominador da expressão, deverá voltar à casa de partida.
- 7. O vencedor é o jogador que completar em primeiro lugar duas voltas no tabuleiro.
- 8. Caso um dos três montes de cartas esgote-se antes do final do jogo, então as respectivas cartas devem ser embaralhadas e recolocadas no tabuleiro.

+6	+6	+6 +6		-1	
-1	-2	-2	-2	-3	
-3	-3	-4	-4	-4	
-5	-5	-5	-6	-6	
-6	Zero	Zero	Zero	Zero	
				Zero	

Depois que os alunos jogaram pelo menos duas vezes, você poderá propor algumas questões como:

- Se o seu marcador estiver na casa 3 c, de que monte você deve retirar uma carta, para poder avançar?
 - De que monte devo retirar uma carta se o meu marcador está na casa 3 (z 4)?
 - O que acontece quando o marcador está na casa $\frac{+2m}{m}$ ou na casa $\frac{-z}{z}$?

Os grupos podem fazer o registro escrito do jogo, relatando as dificuldades encontradas e o entendimento que tiveram.

Atividade: Fração como operador

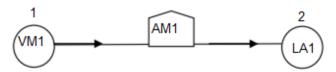
Objetivo: Compreender as frações com o significado de operador multiplicativo, ou seja, um multiplicador de uma quantidade indicada.

Utilizar as peças do FRAC-SOMA 235 com a função de operador multiplicativo.

Fonte: Frac-Soma 235: significantes manipuláveis, criado por Robert Baldino e registrado na Biblioteca Nacional, Rio de Janeiro, sob o nº 30262 em 2 de abril de 1984.

O FRAC-SOMA 235 consiste em barras de mesmo tamanho, 60 centímetros, que são divididas em peças congruentes, com divisores múltiplos de 2, 3 e 5. O jogo completo é formado com as seguintes peças:

- 1 barra branca com 60 centímetros, a unidade;
- 2 peças vermelhas de tamanho 30 cm, (a unidade em duas partes);
- 3 peças amarelas com 20 cm (a unidade em 3 partes);
- 4 peças vermelhas com 15 cm (a unidade em 4 partes);
- 5 peças azuis com 12 cm (a unidade em 5 partes);
- 6 peças laranja com 10 cm (a unidade em 6 partes);
- 8 peças vermelhas com 7,5 cm;
- 9 peças amarelas com aproximadamente 6,67 cm;
- 10 peças roxas com 6 cm;
- 12 peças laranja com 5 cm;
- 15 peças verdes com 4 cm;
- 16 peças vermelhas com 3,75 cm;
- 18 peças laranja com aproximadamente 3,33 cm;
- 20 peças roxas com 3 cm;
- 24 peças laranja com 2,5 cm;
- 25 peças azuis com 2,4 cm;
- 27 peças amarelas com aproximadamente 2,22 cm;
- 30 peças pretas com 2 cm cada.

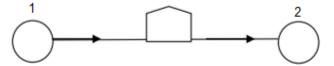

Totalizando, 235 peças que fazem parte do nome do material.

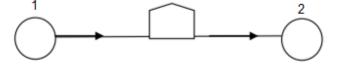
Ficha de Trabalho 1- FT1

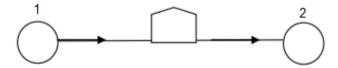
1) Observe as peças do FRAC-SOMA e identi	ique que parte da unidad	le (fração) corresponde
cada barra a seguir:		

Branca (BR):	Vermelha (VM1):	
Amarela (AM1):	Vermelha 2 (VM2):	
Azul (AZ1):	Laranja (LA1):	
Vermelha 3 (VM3):		
Roxo 1 (RX1):	Laranja 2 (LA2):	
Verde (VD):	Vermelho 4 (VM4):	
Laranja 3 (LA3):		
Laranja 4 (LA4):	Azul 2 (AZ2):	
Amarelo 3 (AM3):	Preto (PR):	_


- 2) Tome uma peça VM1 e suponha que ela seja uma espécie varinha mágica que tenha a propriedade de, ao tocar outra peça, dividi-la em duas partes iguais, retendo uma dessas partes. Exemplo: Quando VM1 toca AM1, produz-se uma peça LA1, que é metade de AM1.
- a) Que acontece, então, quando VM1 toca AZ1?
- b) E quando toca LA2?
- c) E quando toca RX1?
- d) A peça AM1 também pode ser considerada como operador?
- e) Qual o efeito produzido quando AM1 toca VM1?
- f) As demais peças do FRAC-SOMA 235 também podem ser consideradas como operadores?
- g) Que operadores representam o BR?
- 3) Nessa atividade, o diagrama abaixo deverá ser preenchido por peças do FRAC-SOMA 235 de modo que, se a peça dentro da bandeira, considerada como operador, atuar sobre peça que está no círculo 1, o resultado deve ser a peça que está no círculo 2. Por exemplo, pondo AM1 na bandeira e VM1 no primeiro círculo, resulta LA1 no segundo.


a) Pondo LA1, no círculo 1 e AM1 na bandeja, que peça deve ser posta no círculo 2?

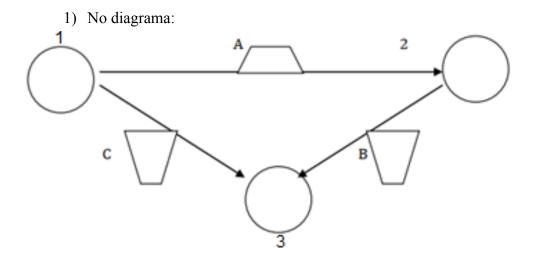

b) Pondo LA1 na bandeira e PR1 no círculo 2, que peça deve ser posta no círculo 1?


c) Pondo VM2 no círculo 1 e RX2 no círculo 2, que peça deve ser posta na bandeira?

c) Pondo uma peça VM1 no primeiro círculo e duas peças AM1 na bandeira, que peça deve ser posta no segundo círculo?

e) Pondo LA1 no círculo 1 e LA4 no círculo 2, que peça deve ser posta na bandeira?

f) Pondo AM2 na bandeira e AM3 no círculo 2, que peça deve ser posta no círculo 1?

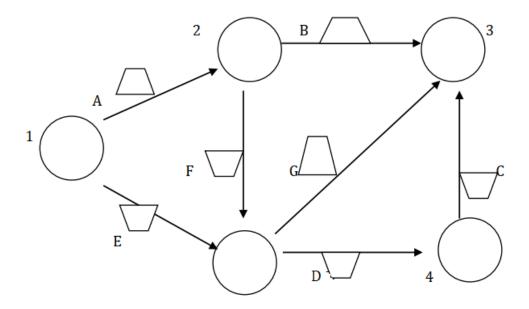

g) Pondo AZ1, no círculo 1 e AM1 na bandeja, que peça deve ser posta no círculo 2?

Após concluir a atividade, é interessante que cada grupo compartilhe com a turma algumas das atividades acima, dizendo como pensaram para resolver. Também podem registrar as

frações correspondentes às tiras utilizadas e a partir disso verificar qual operação matemática pode se usada.

Ficha de Trabalho 2 – FT2

Coloque VM1 na bandeira A, AM1 na B e AZ1 no círculo 1.


- a) Preencha a bandeira e os dois círculos restantes segundo a convenção já utilizada da FT-1. Repita o problema com outras peças. Se necessitar de peças não existentes no FRAC-SOMA 235, escreva a fração correspondente num pedaço de papel e use-o como se fosse a peça que necessita. Não será necessário demonstrar seus resultados a partir do concreto; basta que estejam corretos. Use lápis e papel livremente.
- b) Quantas posições devem ser preenchidas nesse diagrama para que as demais fiquem bem determinadas?
- c) Examine todos os casos possíveis e faça um exemplo de cada um.
- d) É possível mudar o conteúdo dos círculos sem alterar o das bandeiras?
- 2) Considere novamente o diagrama mais simples:
- a) Coloque VM1 no círculo 1 e AZ1 na bandeira. Preencha o círculo 2.

b) Agora, troque os conteúdos do círculo 1 e da bandeira entre si. Preencha o círculo 2. Que conclusão se pode tirar? c) Coloque, AM1 no círculo 1, VM2 na bandeira e preencha o círculo 2. e) Agora, troque os conteúdos do círculo1 e da bandeira entre si e preencha o círculo 2. Que conclusão se pode tirar? É sempre possível trocar o conteúdo do primeiro círculo pelo da bandeira e vice-versa sem alterar o conteúdo do segundo círculo? 3) Agora, cada componente do grupo deverá ir preenchendo sucessivamente os círculos e as

bandeiras, contíguos aos já preenchidos, até que o diagrama abaixo esteja completamente

preenchido.

Sugere-se que após concluir a atividade haja uma conversa com a turma, para ue os alunos possam expressar suas percepções e aprendizados da atividade.

REFERÊNCIAS:

BALDINO, R. R. **Frac-Soma 235**: significantes manipuláveis. Registrado na Biblioteca Nacional, Rio de Janeiro, sob o nº 30262 em 2 de abril de 1984.

CABRAL, T. B. **Epistemology of mathematical education in engineering**: building bridges between calculus and engineering. Site. Disponível em: https://cabraldinos.mat.br/category/projects/. Acesso em: 20 mar. 2022.

HENRIQUES, A. C. C. B. **O Pensamento Matemático Avançado e a aprendizagem da análise numérica num contexto de atividades de investigação**. 2010. Tese (Doutorado) - Curso Didáctica da Matemática, Universidade de Lisboa, Lisboa, 2010. Disponível em: https://repositorio.ul.pt/bitstream/10451/2465/1/ulsd059643_td_Ana_Henriques.pdf. Acesso em: 10 out. 2022.

SMOLE, K. S.; DINIZ, M. I.; MILANI, E. Cadernos do Mathema: jogos de matemática 6º a 9º ano. Porto Alegre: Artmed, 2007.

PHET. Interactive Simulations da Universidade do Colorado. 2016. Site. Disponível em: https://phet.colorado.edu/pt_BR/simulations/function-builder-basics. Acesso em: 31 jan. 2022.